精英家教网 > 高中数学 > 题目详情
(1)已知0<α<
π
2
<β<π
,cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.
(2)已知sinx+cosx=
1
5
,x∈(0,π),求tanx的值.
分析:(1)由α的范围得到sinα大于0,再由cosα的值,利用同角三角函数间的基本关系求出sinα的值,再由sin(α+β)的值,得到α+β的范围,利用同角三角函数间的基本关系求出cos(α+β)的值,将所求式子中的角β变形为(α+β)-α,利用两角和与差的余弦函数公式化简后,把各自的值代入即可求出值;
(2)将已知等式左右两边平方,利用同角三角函数间的基本关系求出2sinxcosx的值小于0,再由x的范围得到sinx大于0,cosx小于0,求出sinx-cosx的值,进而确定出sinx与cosx的值,得到tanx的值.
解答:解:(1)∵0<α<
π
2
,cosα=
3
5

∴sinα=
1-cos2α
=
4
5

∵sin(α+β)=
5
13
,∴
π
2
<α+β<π,
∴cos(α+β)=-
12
13

∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-
12
13
×
3
5
+
5
13
×
4
5
=-
16
65

(2)由sinx+cosx=
1
5
,得到(sinx+cosx)2=1+2sinxcosx=
1
25

∴2sinxcosx=-
24
25
,又x∈(0,π),
∴sinx>0,cosx<0,
∴sinx-cosx=
1-2sinxcosx
=
7
5

∴sinx=
4
5
,cosx=-
3
5

则tanx=-
4
3
点评:此题考查了两角和与差的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an-n+1
)-n2+1
,已知a1=4,求证:an≥2n+2;
(3)在(2)的条件下,试比较
1
1+a1
+
1
1+a2
+
1
1+a3
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知0<α<
π
4
,β为f(x)=cos(2x+
π
8
)的最小正周期,
a
=(tan(α+
1
4
β),-1),
b
=(cosα,2),且
a
b
=3.求
cos2α+sin2(α+β)
cosα-sinα
的值.  
(2)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知
AM
=
c
AN
=
d
,试用
c
d
表示
AB
AD

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知0<x<,求x(4-3x)的最大值;

(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知0<α<
π
2
<β<π
,cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.
(2)已知sinx+cosx=
1
5
,x∈(0,π),求tanx的值.

查看答案和解析>>

同步练习册答案