精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=1,当n≥2时,an,Sn,Sn成等比数列.

(1)求a2,a3,a4,并推出an的表达式;

(2)用数学归纳法证明所得的结论.

【解析】∵an,Sn,Sn成等比数列,

=an·(Sn)(n≥2)   (*)

(1)由a1=1,得S2=a1+a2=1+a2

代入(*)式得:a2=-

由a1=1,a2=-,得

S3+a3代入(*)式得:a3=-

同理可得:a4=-,由此可推出:

an

(2)①当n=1,2,3,4时,由(1)知猜想成立.

②假设n=k(k≥2)时,ak=-成立,

=-·(Sk)

∴(2k-3)(2k-1)+2Sk-1=0

∴Sk,Sk=-(舍)

由Sk+12=ak+1·(Sk+1),

得(Sk+ak+1)2=ak+1(ak+1+Sk)

+ak+12=ak+12ak+1

⇒ak+1,即n=k+1时命题也成立.

由①②知,an对一切n∈N成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案