精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

(1)详见解析;(2)

解析试题分析:(Ⅰ)因为中,是中位线,故,所以要证明平面,只需证明平面,因为,故只需证明,由已知侧面与底面垂直且,故,从而,进而证明平面;(Ⅱ)连接,因为的中位线,则,则就是异面直线所成的角,连接,由已知得,则,在中求即可.

试题解析:(Ⅰ)分别是的中点

由①②知平面.
(Ⅱ)连接
的中点是异面直线所成的角.
等腰直角三角形,且
又平面平面,所以平面
. ,.
考点:1、线面垂直的判定;2、面面垂直的性质定理;3、异面直线所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多面体中,平面平面的中点.

(1)求证:
(2)求直线与平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案