16£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2cos2x£¬1£©£¬$\overrightarrow{b}$=£¨2cos£¨2x-$\frac{¦Ð}{3}$£©£¬-1£©£®Áîf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¼°µ¥µ÷ÔöÇø¼ä£®
£¨2£©Èôf£¨$\frac{1}{4}$¦È£©=$\frac{2}{3}$£¬ÇҦȡʣ¨$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$£©£¬Çócos¦ÈµÄÖµ£®
£¨2£©µ±x¡Ê[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]ʱ£¬Çóf£¨x£©µÄ×îСֵÒÔ¼°È¡µÃ×îСֵʱxµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌõ¼þÀûÓÃÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬Èý½ÇºãµÈ±ä»»»¯¼òº¯ÊýµÄ½âÎöʽ£¬ÔÙÀûÓÃÕýÏÒº¯ÊýµÄÖÜÆÚÐԺ͵¥µ÷ÐÔ£¬µÃ³ö½áÂÛ£®
£¨2£©ÓÉf£¨$\frac{1}{4}$¦È£©=$\frac{2}{3}$£¬ÇóµÃsin£¨¦È+$\frac{¦Ð}{6}$£©=$\frac{1}{3}$£¬½áºÏ¦È¡Ê£¨$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$£©£¬ÇóµÃcos£¨¦È+$\frac{¦Ð}{6}$£©µÄÖµ£®ÔÙ¸ù¾Ýcos¦È=cos[£¨¦È+$\frac{¦Ð}{6}$£©-$\frac{¦Ð}{6}$]¼ÆËãÇóµÃ½á¹û£®
£¨3£©ÓÉx¡Ê[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]ʱ£¬ÀûÓÃÕýÏÒº¯ÊýµÄ¶¨ÒåÓòºÍÖµÓòÇóµÃº¯Êýf£¨x£©È¡µÃ×îСֵÒÔ¼°´ËʱxµÄÖµ£®

½â´ð £¨1£©f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=2cos2x•2cos£¨2x-$\frac{¦Ð}{3}$£©-1=4cos2x£¨cos2xcos$\frac{¦Ð}{3}$+sin2xsin$\frac{¦Ð}{3}$£©-1
=2cos22x+2$\sqrt{3}$sin2xcos2x-1=cos4x+$\sqrt{3}$sin4x=2sin£¨4x+$\frac{¦Ð}{6}$£©£¬
¹Êº¯Êýf£¨x£©µÄÖÜÆÚΪ$\frac{2¦Ð}{4}$=$\frac{¦Ð}{2}$£®
Áî2k¦Ð-$\frac{¦Ð}{2}$¡Ü4x+$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬ÇóµÃ$\frac{k¦Ð}{2}$-$\frac{¦Ð}{6}$¡Üx¡Ü$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬¿ÉµÃf£¨x£©µÄÔöÇø¼äΪ[µÃ$\frac{k¦Ð}{2}$-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$]£¬k¡ÊZ£®
£¨2£©Èôf£¨$\frac{1}{4}$¦È£©=2sin£¨¦È+$\frac{¦Ð}{6}$£©=$\frac{2}{3}$£¬¿ÉµÃsin£¨¦È+$\frac{¦Ð}{6}$£©=$\frac{1}{3}$£¼$\frac{1}{2}$£¬
½áºÏ¦È¡Ê£¨$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$£©£¬¿ÉµÃ¦È+$\frac{¦Ð}{6}$¡Ê£¨$\frac{5¦Ð}{6}$£¬¦Ð£©£¬¹Êcos£¨¦È+$\frac{¦Ð}{6}$£©=-$\sqrt{{1-sin}^{2}¦È}$=-$\frac{2\sqrt{2}}{3}$£®
¡àcos¦È=cos[£¨¦È+$\frac{¦Ð}{6}$£©-$\frac{¦Ð}{6}$]=cos£¨¦È+$\frac{¦Ð}{6}$£©cos$\frac{¦Ð}{6}$+sin£¨¦È+$\frac{¦Ð}{6}$£©sin$\frac{¦Ð}{6}$=-$\frac{2\sqrt{2}}{3}$¡Á$\frac{\sqrt{3}}{2}$+$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1-2\sqrt{6}}{6}$£®
£¨3£©µ±x¡Ê[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]ʱ£¬4x+$\frac{¦Ð}{6}$¡Ê[$\frac{7¦Ð}{6}$£¬$\frac{13¦Ð}{6}$]£¬-1¡Üsin£¨4x+$\frac{¦Ð}{6}$£©¡Ü$\frac{1}{2}$£¬
¹Êµ±4x+$\frac{¦Ð}{6}$=$\frac{3¦Ð}{2}$ʱ£¬º¯Êýf£¨x£©È¡µÃ×îСֵΪ-2£¬´Ëʱ£¬x=$\frac{¦Ð}{3}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½£¬Èý½ÇºãµÈ±ä»»£¬ÕýÏÒº¯ÊýµÄÖÜÆÚÐÔ¡¢µ¥µ÷ÐÔ¡¢¶¨ÒåÓòºÍÖµÓò£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èôº¯Êýf£¨x£©Îª¶¨ÒåÓòDÉϵĵ¥µ÷º¯Êý£¬ÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹µÃµ±x¡Ê[a£¬b]ʱ£¬º¯Êýf£¨x£©µÄÖµÓòÇ¡ºÃΪ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÎªDÉϵġ°Õýº¯Êý¡±£¬Çø¼ä[a£¬b]Ϊº¯Êýf£¨x£©µÄ¡°ÕýÇø¼ä¡±£®
£¨1£©ÊÔÅжϺ¯Êýf£¨x£©=$\frac{3}{4}$x2-3x+4ÊÇ·ñΪ¡°Õýº¯Êý¡±£¿ÈôÊÇ¡°Õýº¯Êý¡±£¬Çóº¯Êýf£¨x£©µÄ¡°ÕýÇø¼ä¡±£»Èô²»ÊÇ¡°Õýº¯Êý¡±£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÉèÃüÌâp£ºf£¨x£©=$\sqrt{x-\frac{8}{9}}$+mÊÇ¡°Õýº¯Êý¡±£»ÃüÌâq£ºg£¨x£©=x2-m£¨x£¼0£©ÊÇ¡°Õýº¯Êý¡±£®Èôp¡ÄqÊÇÕæÃüÌ⣬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èô·ÇÁ㺯Êýf£¨x£©¶ÔÈÎÒâʵÊýa£¬b¾ùÓÐf£¨a+b£©=f£¨a£©•f£¨b£©£¬ÇÒµ±x£¼0ʱ£¬f£¨x£©£¾1£®
£¨1£©ÇóÖ¤£ºf£¨x£©£¾0£»      
£¨2£©ÇóÖ¤£ºf£¨x£©Îª¼õº¯Êý£»
£¨3£©µ±f£¨2£©=$\frac{1}{4}$ʱ£¬½â²»µÈʽf£¨x-3£©•f£¨5£©¡Ü$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªM£¨-2£¬0£©£¬N£¨2£¬0£©£¬ÇóÒÔMNΪб±ßµÄÖ±½ÇÈý½ÇÐζ¥µãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{3}^{-x}£¬x¡Ê£¨-¡Þ£¬1£©}\\{lo{g}_{27}x£¬x¡Ê[1£¬+¡Þ£©}\end{array}\right.$£¬ÔòÂú×ãf£¨x£©=$\frac{1}{3}$µÄxµÄÖµÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô¡°1¡Üx¡Ü3¡±ÊÇ¡°0¡Üx¡Üm¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ[3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨2£¬0£©£¬B£¨0£¬2£©£¬¡÷ABO£¨OΪ×ø±êÔ­µã£©µÄÍâ½ÓÔ²¼ÇΪԲP£®
£¨1£©ÇóÔ²PµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßy+1=k£¨x+1£©ÓëÔ²PÓй«¹²µã£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ÆË㣺
£¨1£©£¨2$\frac{1}{4}$£©${\;}^{\frac{1}{2}}$-£¨$-\frac{1}{8}$£©0-£¨3$\frac{3}{8}$£©${\;}^{-\frac{2}{3}}$+1.5-2
£¨2£©ÒÑÖªlog73=alog74=b£¬Çólog748£®£¨ÆäÖµÓÃa£¬b±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èôa£¾0£¬ÇÒa¡Ù1ʱ£¬Èôax=N£¬Ôòx=logaN£¬·´Ö®³ÉÁ¢Âð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸