【题目】对某校高三年级100名学生的视力情况进行统计(如果两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在的概率为.
(1)求a,b的值;
(2)若报考高校A专业的资格为:任何一眼裸眼视力不低于5.0,已知在中有的学生裸眼视力不低于5.0.现用分层抽样的方法从和中抽取4名同学,设这4人中有资格(仅考虑视力)考A专业的人数为随机变量ξ,求ξ的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】已知双曲线(a>0,b>0)的右焦点为F(3,0),左、右顶点分别为M,N,点P是E在第一象限上的任意一点,且满足kPMkPN=8.
(1)求双曲线E的方程;
(2)若直线PN与双曲线E的渐近线在第四象限的交点为A,且△PAF的面积不小于3,求直线PN的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线与轴交于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)
等边△ABC的边长为3,点D,E分别为AB,AC上的点,且满足(如图①),将△ADE沿DE折起到△A1DE的位置,使二面角A1﹣DE﹣B成直二面角,连接A1B,A1C(如图②).
(1)求证:A1D⊥平面BCED;
(2)在线段BC上是否存在点P(不包括端点),使直线PA1与平面A1BD所成的角为60°?若存在,求出A1P的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在上恒成立,则a的取值范围是a>1;
④对任意的x1<0,x2<0且x1≠x2,恒有
.
其中正确命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程,并求时直线的普通方程;
(2)直线和曲线交于两点,点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设分别是椭圆的左、右焦点,已知椭圆的长轴为是椭圆上一动点,的最大值为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,为椭圆上一点,为坐标原点,且满足,其中,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边在上,矩形的一边在上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价与休息区造价之比为.
(1)记游泳池及休息区的总造价为,求的表达式;
(2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com