精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知:以点为圆心的圆与x轴交于
点O,A,与y轴交于点O,B,其中O为原点。
(Ⅰ) 求证:⊿OAB的面积为定值;
(Ⅱ) 设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程。

解:(Ⅰ)因为圆C过原点O, 
设圆C的方程是    令x=0,得y1 =0,
令y=0,得x1=0,x2="2t" . 
即⊿OAB的面积为定值。  5分;
(Ⅱ)方法一:垂直平分线段MN。
直线OC的方程是 解得 t=2或t=-2。
当t=2时,圆心C的坐标为(2,1),此时C到直线y=-2x+4的距离
圆C与直线y=-2x+4相交于两点。
当t=-2时,圆心C的坐标为(-2,-1),此时C到直线y=-2x+4的距离此时圆C与直线y=-2x+4不相交,
所以t=-2不符合题意,舍去。所以,圆C的方程为        12分
方法二:可用解方程法,结果相同。过程从略。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分).已知圆与直线相切。
(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;
(2)已知点A,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线
AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)光线l过点P(1,-1),经y轴反射后与圆C:(x-4)2+(y-4)2=1
相切,求光线l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0.
(1)求m的值;
(2)求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

斜率为2的直线L经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为(  ).
A.1           B.           C.          D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,圆C:,直线.
(1) 当a为何值时,直线与圆C相切;
(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

、已知圆O:x2+y2=13

(1)证明:点A(-1,5)在圆O外。
(2)如图所示,经过圆O上任P一点作y轴的垂线,垂足为Q,求线段PQ的中点M的轨迹方程。(12分)

查看答案和解析>>

同步练习册答案