【题目】已知R,函数=.
(1)当时,解不等式>1;
(2)若关于的方程+=0的解集中恰有一个元素,求的值;
(3)设>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2=(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.
(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;
(2)设直线与圆交于不同的两点,且,求圆的方程;
(3)设直线与(2)中所求圆交于点、, 为直线上的动点,直线,与圆的另一个交点分别为,,且,在直线异侧,求证:直线过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中有高一新生500名,分成水平相同的两类教学实验,为对比教学效果,现用分层抽样的方法从两类学生中分别抽取了40人,60人进行测试
(1)求该学校高一新生两类学生各多少人?
(2)经过测试,得到以下三个数据图表:
图1:75分以上两类参加测试学生成绩的茎叶图
图2:100名测试学生成绩的频率分布直方图
下图表格:100名学生成绩分布表:
①先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;
②该学校拟定从参加考试的79分以上(含79分)的类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数,且相邻两对称轴间的距离为.
(Ⅰ)当时,求的单调递减区间;
(Ⅱ)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),
得到函数的图象.当时,求函数的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com