精英家教网 > 高中数学 > 题目详情
11.函数y=x5+a3+bx+3在[2,8]有最小值是-6,则在[-8,-2]上有(  )
A.最大值6B.最小值-6C.最大值12D.最小值-12

分析 直接利用函数的奇偶性,求解函数的最值即可、

解答 解:设f(x)=x5+a3+bx,函数f(x)是奇函数,函数y=x5+a3+bx+3在[2,8]有最小值是-6,
可得函数f(x)在[2,8]有的最小值为:-9,
函数f(x)在[-8,-2]有的最大值为:9,
则函数y=x5+a3+bx+3在[-8,-2]上有最大值:12.
故选:C.

点评 本题考查函数的奇偶性的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知函数y=logax,y=logbx,y=logcx,y=logdx的图象分别是曲线C1,C2,C3,C4,试判断0,1,a,b,c,d的大小关系,并用“<”连接起来.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{1-x}$的图象与它反函数的图象的交点共有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若点P(2,m)到直线3x-4y+2=0的距离为4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当x=$\frac{1}{2}$时,x(1-x)的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数中自变量x的取值范围:
(1)y=2${\;}^{\sqrt{x}}$;
(2)y=3${\;}^{\sqrt{-x}}$;
(3)y=$\sqrt{{3}^{x}-9}$;
(4)y=$\sqrt{1-(\frac{1}{2})^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a>0,ab<0,那么(  )
A.b>0B.b可大于也可等于0
C.b<0D.b可为任意实数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=|x2-2x|-a没有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.彗星“紫金山一号”是南京紫金山天文台发现的,它的运行轨道是以太阳为一个焦点的椭圆,测得轨道的近日点(距离太阳最近的点)距太阳中心1.486天文单位,远日点(距离太阳最远的点)距太阳中心5.563天文单位(1天文单位是太阳到地球的平均距离.约1.5×108km),且近日点、远日点及太阳中心在同一条直线上,求轨道的方程.

查看答案和解析>>

同步练习册答案