精英家教网 > 高中数学 > 题目详情
1.某城市自来水厂向全市供应生产与生活用水,蓄水池现有水9千吨,水厂每小时向池中注入2千吨水,同时向全市供水,x小时内供水总量为8$\sqrt{x}$,问:
(1)多少小时时池内水量最少?
(2)当蓄水池水量少于3千吨时,供水就会出现紧张现象,那么出现这种紧张情况有多长时间?

分析 (1)根据题意列出y与x的函数解析式,变形后利用二次函数性质求出池内水量最少时的时间即可;
(2)若每小时向水池供水3千吨,表示出y与x关系式,利用作差法判断即可.

解答 解:(1)依题意得:y=9+2x-8$\sqrt{x}$=2($\sqrt{x}$-2)2+1,
当$\sqrt{x}$=2,即x=4时,蓄水池水量最少,ymin=1(千吨),
则y与x的函数解析式为y=9+2x-8$\sqrt{x}$,且4小时时,y的最小值为1千吨,即为池内水量最少;
(2)若每小时向水池供水3千吨,即y=9+3x-8$\sqrt{x}$,
∴(9+3x-8$\sqrt{x}$)-3=3($\sqrt{x}$-$\frac{4}{3}$)2+$\frac{2}{3}$>0,
则水厂每小时注入3千吨水,不会发生供水紧张情况.

点评 此题考查了函数模型的选择与应用,熟练掌握二次函数性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知数列{an}中,a2=102,an+1-an=4n,则数列$\left\{{\frac{a_n}{n}}\right\}$的最小项是(  )
A.第6项B.第7项C.第8项D.第9项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|-1<x<2},B={x|(2x+1)(3-x)<0},则A∩B是(  )
A.{x|2<x<3}B.{x|-$\frac{1}{2}$<x<2}C.{x|-1$<x<-\frac{1}{2}$}D.{x|-1$<x<\frac{1}{2}$或2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个正方体的边长为2,则其外接球的体积是4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a,b∈R,那么“a+b>1”是“a2+b2>1”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:?x>0,总有x2-1≥0,则?p为(  )
A.?x0≤0,使得x2-1<0B.?x0>0,使得x2-1<0
C.?x>0,总有x2-1<0D.?x≤0,总有x2-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,AB=AC,以点B为圆心,以BC为半径的圆分别交AB,AC于D,E两点,且EF为该圆的直径.
(1)求证:∠A=2∠F;
(2)若AE=$\frac{1}{2}$EC=1,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}的前n项和为Sn.若a3=20-a6,则S8等于80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设M是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一点,F1,F2为焦点,∠F1MF2=$\frac{π}{6}$,求△F1MF2的面积.

查看答案和解析>>

同步练习册答案