【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.
【答案】
(1)解:a=﹣3,b=1时,f(x)=lnx﹣ x2﹣2x,
f′(x)= ﹣3x﹣2,f″(x)=﹣ ﹣3<0,
∴f′(x)在(0,+∞)递减,
而f′( )=0,
∴f(x)在(0, )递增,在( ,+∞)递减,
∴f(x)max=f( )=﹣ln3﹣
(2)解:∵方程2mf(x)=x2有唯一实数解,即x2﹣2mlnx﹣2mx=0有唯一实数解,
设g(x)=x2﹣2mlnx﹣2mx,则g′(x)= .
令g′(x)=0,x2﹣mx﹣m=0.
∵m>0,x>0,
∴x1= <0(舍去),x2= .
当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减;当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)上单调递增.
∴g(x)最小值为g(x2).
则 ,即 ,
∴2mlnx2+mx2﹣m=0即2lnx2+x2﹣1=0.
设h(x)=2lnx+x﹣1(x>0),h′(x)= +1>0恒成立,
故h(x)在(0,+∞)单调递增,h(x)=0至多有一解.
又h(1)=0,
∴x2=1,
即 =1,解得m=
【解析】(1)a=﹣3,b=1,求出函数的导数,得到函数的单调区间,从而求出函数的最大值即可;(2)方程2mf(x)=x2有唯一实数解,即x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,利用导数可得其最小值为g(x2).则 ,即2lnx2+x2﹣1=0.设h(x)=2lnx+x﹣1(x>0),再利用导数研究其单调性即可得出答案.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,a2=3,a5=81,bn=1+2log3an .
(1)求数列{bn}的前n项的和;
(2)已知数列 的前项的和为Sn , 证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
(1)求根据上表可得线性回归方程=x+;
(2) 模型预报广告费用为6万元时销售额为多少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.
(Ⅰ)证明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为,,…,).
(1)求成绩在的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在和的学生中任选两人,求他们的成绩在同一分组区间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com