精英家教网 > 高中数学 > 题目详情
抛物线y2=4x的焦点为F,点A,B在抛物线上,且∠AFB=
3
,弦AB中点M在准线l上的射影为M′,则
|MM′|
|AB|
的最大值为(  )
分析:设AF=a,BF=b,由抛物线定义得2|MM′|=a+b.再由余弦定理得|AB|2=a2+b2-2abcos
3
,结合不等式a+b≥2
ab
求得|AB|的范围,把|MM′|和|AB|作比可得答案.
解答:解:如图,
设AF=a(a>0),BF=b(b>0),由抛物线定义,得2|MM′|=a+b.
在△ABF中,由余弦定理,得|AB|2=a2+b2-2abcos
3
=a2+b2+ab=(a+b)2-ab,
∵a>0,b>0,由基本不等式得:a+b≥2
ab
,∴ab≤
(a+b)2
4

(a+b)2-ab≥
3
4
(a+b)2

|AB|2
3
4
(a+b)2
,∴|AB|≥
3
2
(a+b)

|MM′|
|AB|
a+b
2
3
2
(a+b)
=
3
3

|MM′|
|AB|
的最大值为
3
3

故选:D.
点评:本题主要考查对抛物线定义的应用和余弦定理的应用.训练了基本不等式的用法,考查了学生综合分析问题和解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,准线为l,则过点F和M(4,4)且与准线l相切的圆的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F.
(1)若直线l过点M(4,0),且F到直线l的距离为2,求直线l的方程;
(2)设A,B为抛物线上两点,且AB不与X轴垂直,若线段AB中点的横坐标为2.求证:线段AB的垂直平分线恰过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点,且AF=2BF,则A点的坐标为
(5,2
2
)或(5,-2
2
(5,2
2
)或(5,-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知抛物线y2=4x的焦点为F,过F的直线与该抛物线相交于A(x1,y1),B(x2,y2)两点,则
y
2
1
+
y
2
2
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)在抛物线
y
2
 
=4x
的焦点为圆心,并与抛物线的准线相切的圆的方程是
(x-1)2+y2=4
(x-1)2+y2=4

查看答案和解析>>

同步练习册答案