【题目】如果函数满足且是它的零点,则函数是“有趣的”,例如就是“有趣的”,已知是“有趣的”.
(1)求出b、c并求出函数的单调区间;
(2)若对于任意正数x,都有恒成立,求参数k的取值范围.
【答案】(1),,单减区间为0,1),单增区间为;(2)
【解析】
(1)根据定义得方程恒成立,解得b、c,再根据复合函数单调性确定函数的单调区间;
(2)先化简不等式,再求导数,根据导函数符号分类讨论,利用导数证明恒成立,再说明不恒成立.
(1)因为是“有趣的”,所以
即
的定义域为,单减区间为(0,1),单增区间为.
(2)参数的取值范围为.
引理:不等式对任意正数y都成立。证明如下:
由恒成立,得恒成立。.
我们构造函数。注意到。
构造,注意到,且
我们以下分两部分进行说明:
第一部分:时,恒成立。
时,由引理得:,知道,
从而当时有,时有,所以在(0,1)上为负,在上为正。
从而在上单减,在上单增,最小值为。
从而
第二部分:时,不满足条件。
构造函数。
(ⅰ)若,则对于任意,都有。
(ⅱ)若,则对于任意,,
而,所以在(0,1)上有唯一零点,同时在,时都有。
于是只要,无论是(ⅰ)还是(ⅱ),我们总能找到一个实数,在时都有。
这样在时,都有,结合,所以时,从而在时有。,所以时,不满足要求。
科目:高中数学 来源: 题型:
【题目】设等差数列的前项和为,已知, .
(1)求;
(2)若从中抽取一个公比为的等比数列,其中,且,
(i)求的通项公式;
(ii)记数列的前项和为,是否存在正整数,使得成等差数列?若存在,求出满足的条件;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等腰梯形中,是的中点,,将沿着翻折成,使平面平面.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为,
,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),,(),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为,
曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),,(),
,
,
当 时, ,
所以△MON面积的最大值为.
【题型】解答题
【结束】
23
【题目】已知函数的定义域为;
(1)求实数的取值范围;
(2)设实数为的最大值,若实数, , 满足,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为,点的极坐标为,在平面直角坐标系中,直线经过点,且倾斜角为.
(1)写出曲线的直角坐标方程以及点的直角坐标;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球贏球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列,则此数列的项数为( )
A.167B.168C.169D.170
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆C1和抛物线C2有相同的焦点(1,0),椭圆C1过点,抛物线的顶点为原点.
(1)求椭圆C1和抛物线C2的方程;
(2)设点P为抛物线C2准线上的任意一点,过点P作抛物线C2的两条切线PA,PB,其中A、B为切点.
设直线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
②若直线AB交椭圆C1于C,D两点,S△PAB,S△PCD分别是△PAB,△PCD的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com