精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (x∈R)
(1)用定义证明f(x)是增函数;
(2)若g(x)=f(x)﹣a是奇函数,求g(x)在(﹣∞,a]上的取值集合.

【答案】
(1)证明:f(x)=2+

设x1<x2,则f(x1)﹣f(x2)=2× <0,

∴f(x)是增函数


(2)解:∵g(x)=f(x)﹣a是奇函数,

∴g(0)=f(0)﹣a=3﹣a=0,

∴a=3,

∴g(x)= ﹣1,

∵x≤3,∴0<

∴﹣1<g(x)≤


【解析】(1)利用定义证明步骤,即可证明f(x)是增函数;(2)利用g(x)=f(x)﹣a是奇函数,求出a,即可求g(x)在(﹣∞,a]上的取值集合.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C的对边分别为a、b、c.己知c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦点在x轴上,离心率等于 ,且过点(1, ). (Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若 1 2 ,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函数的零点;
(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为an的一组正三角形AnBn1Bn的底边Bn1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为2的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双流中学校运动会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位: ),身高在175以上(包括175)定义为“高个子”,身高在175以 下(不包括175 )定义为“非高个子”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?

(2)若从身高180以上(包括180)的志愿者中选出男、女各一人,求这两人身高相差5以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并计算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案