精英家教网 > 高中数学 > 题目详情
8.对于给定的正整数数列{an},满足an+1=an+bn,其中bn是an的末位数字,下列关于数列{an}的说法正确的是(  )
A.如果a1是5的倍数,那么数列{an}与数列{2n}必有相同的项
B.如果a1不是5的倍数,那么数列{an}与数列{2n}必没有相同的项
C.如果a1不是5的倍数,那么数列{an}与数列{2n}只有有限个相同的项
D.如果a1不是5的倍数,那么数列{an}与数列{2n}有无穷多个相同的项.

分析 分类讨论:当a1是5的倍数,则数列{an}的末位数字是5或0,数列{2n}的末位数字只能是2,4,6,8,不存在相同的项,判断A不正确;当a1不是5的倍数时,则这个数的末位数字只能是2,4,6,8,数列{an}的末位数字可以是2,4,6,8,数列{2n}的末位数字有且只有2,4,6,8,故它们必有相同的项,且有无穷多个相同的项,由此判断B,C不正确,D正确.

解答 解:如果a1是5的倍数,则数列{an}的末位数字是5或0,数列{2n}的末位数字只能是2,4,6,8,不存在相同的项,因此A不正确;
当a1不是5的倍数时,这个数加上它的末位数字,一直加下去,则这个数的末位数字只能是2,4,6,8,数列{an}的末位数字可以是
2,4,6,8,数列{2n}的末位数字有且只有2,4,6,8,故它们必有相同的项,且有无穷多个相同的项,因此B,C不正确,D正确.
∴关于数列{an}的说法正确的是:D.
故选:D.

点评 本题考查命题真假判断与应用,考查了数列递推式的运用,求解此类题的关键是要对命题涉及的知识有很好的理解与掌握,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)说明怎样由y=sinx的图象得到f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{a}{x}-1$.
(1)若曲线y=f(x)存在斜率为-1的切线,求实数a的取值范围;
(2)求f(x)的单调区间;
(3)设函数g(x)=$\frac{x+a}{lnx}$,求证:当-1<a<0时,g(x)在(1,+∞)上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则双曲线离心率的取值范围是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l:y=x-1,双曲线c1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,抛物线c2:y2=2x,直线l与c1相交于A,B两点,与c2交于C,D两点,若线段AB与CD的中点相同,则双曲线c1的离心率为(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,则$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.
(1)求角C;
(2)若$sin(B-\frac{π}{3})=\frac{3}{5}$,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a2=4,前4项之和为18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=n•{2^{{a_n}-2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是12.

查看答案和解析>>

同步练习册答案