精英家教网 > 高中数学 > 题目详情
14.设|$\overrightarrow{a}$|=2$\sqrt{2}$,|$\overrightarrow{b}$|=$\frac{\sqrt{3}}{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{2}$,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=30°.

分析 根据题意,设<$\overrightarrow{a}$,$\overrightarrow{b}$>=θ,由数量积的运算性质可得cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$,代入数据可得cosθ=$\frac{\sqrt{3}}{2}$,由向量夹角的范围,计算可得答案.

解答 解:根据题意,设<$\overrightarrow{a}$,$\overrightarrow{b}$>=θ,
则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{\sqrt{2}}{2\sqrt{2}×\frac{\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{2}$,
又由0°≤θ≤180°,
则<$\overrightarrow{a}$,$\overrightarrow{b}$>=θ=30°;
故答案为:30°.

点评 本题考查数量积的运算,解题的关键是掌握数量积的定义与运算性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知全集U={1,2,3,4,5},集合A={1,4,5},B={2,3,4},则A∩(∁UB)=(  )
A.{4}B.{1,5}C.{2,3}D.{1,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)对任意实数x满足f(x+a)-f(x)=$\sqrt{3}$[1+f(x)•f(x+a)],讨论f(x)的周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(8,-5)和B(0,b)的距离为17,则b的值为(  )
A.10B.-20C.-20或10D.20或-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-1,2),则向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$的坐标是(7,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设点M为△ABC的三条中线的交点,O为△ABC所在平面内任意一点,证明:$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=3$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若?x>0,$\frac{ax}{{x}^{2}+1}$≤x-lnx恒成立,则实数a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数最大值和最小值,并写出取得最值时x的集合:y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$≤x≤$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列方程中表示椭圆的是(  )
A.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=4B.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2
C.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=6D.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$-$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2

查看答案和解析>>

同步练习册答案