精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点数学公式

解:(Ⅰ)∵椭圆的左、右焦点分别为F1,F2
点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形,
∴b=2,
所求椭圆方程为. …(5分)
(Ⅱ)若直线AB的斜率存在,设AB方程为y=kx+m,
依题意m≠±2.
设A(x1,y1),B(x2,y2),
,得(1+2k2)x2+4kmx+2m2-8=0.…(7分)



即2k+(m-2)•=8.…(10分)
所以k=-,整理得 m=
故直线AB的方程为y=kx+,即y=k(x+)-2.
所以直线AB过定点(-,-2). …(12分)
若直线AB的斜率不存在,设AB方程为x=x0
设A(x0,y0),B(x0,-y0),
由已知
.此时AB方程为x=-,显然过点(-,-2).
综上,直线AB过定点(-,-2).…(13分)
分析:(Ⅰ)由题设条件知b=2,,由此能够求出椭圆方程.
(Ⅱ)若直线AB的斜率存在,设AB方程为y=kx+m,依题意m≠±2.由 ,得(1+2k2)x2+4kmx+2m2-8=0,由韦达定理结合题设条件能够导出直线AB过定点(-,-2).若直线AB的斜率不存在,设AB方程为x=x0,由题设条件能够导出直线AB过定点(-,-2).
点评:本题考查椭圆方程的求法,考查直线过定点的证明,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的左、右焦点分别为F1,F2,椭圆的离心率为
1
2
且经过点P(1,
3
2
)
.M为椭圆上的动点,以M为圆心,MF2为半径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与y轴有两个交点,求点M横坐标的取值范围;
(3)是否存在定圆N,使得圆N与圆M相切?若存在.求出圆N的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左、右焦点分别为,其右准线上上存在点(点 轴上方),使为等腰三角形.

⑴求离心率的范围;

    ⑵若椭圆上的点到两焦点的距离之和为,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期假期检测考试理科数学试卷 题型:解答题

已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,△是等腰直角三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点().

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省三明市高三上学期三校联考数学理卷 题型:解答题

(本题满分14分)     已知椭圆的左、右焦点分别为F1、F2,其中

F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  

(I)求椭圆C1的方程;   (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年云南省德宏州高三高考复习数学试卷 题型:解答题

(本小题满分12分)

已知椭圆的左、右焦点分别为,离心率,右准线方程为

(I)求椭圆的标准方程;

(II)过点的直线与该椭圆交于MN两点,且,求直线的方程.

 

查看答案和解析>>

同步练习册答案