精英家教网 > 高中数学 > 题目详情

【题目】201911日起我国实施了个人所得税的新政策,新政策的主要内容有:①个税起征点为5000元,②每月应纳税所得额(含税)=收入个税起征点专项附加扣除.赵先生某月收入元,符合赡养老人与子女教育专项附加扣除,共计3000.

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过1200025000元的部分

税率(%)

3

10

20

1)当时,赵先生当月应缴纳的个税额是多少?

2)设赵先生当月应缴纳的个税额是元,若,请求出关于的函数;

3)若赵先生该月应纳的个税额为3020元,问他的月收入是多少元?

【答案】1;(2;(3

【解析】

1)先求出李某全月应纳税所得额,由此能求出李某月应缴纳的个税金额.

2)依题意利用分段函数计算可得;

3)首先判断的范围,再代入(2)中函数计算可得.

解:(1)当时,则应纳税所得额为(元)

(元)

故当时,赵先生当月应缴纳的个税额是元;

(2)依题意当时,应纳税所得额为,故当月应缴纳的个税额是元,

时,应纳税所得额为,故当月应缴纳的个税额是元,

时,应纳税所得额为,故当月应缴纳的个税额是元,

时,应纳税所得额为,故当月应缴纳的个税额是元,

3)由(2)得,当时,

所以,则,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:

第一次

第二次

第三次

第四次

第五次

甲的成绩

82

82

79

95

87

乙的成绩

95

75

80

90

85

1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;

2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14.

(1)求这次行车总费用y关于x的表达式;

(2)x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F(2,0),动点P满足:点P到直线x=-1的距离比其到点F的距离小1.

(Ⅰ)求点P的轨迹C的方程;

(Ⅱ)过F作直线l垂直于x轴与曲线C交于AB两点,Q是曲线C上异于AB的一点,设曲线C在点ABQ处的切线分别为l1l2l3,切线l1l2交于点R,切线l1l3交于点S,切线l2l3交于点T,若RST的面积为6,求Q点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手车直卖网站对其所经营的一款品牌汽车的使用年数x与销售价格y(单位:万元,辆)进行了记录整理,得到如下数据:

(I)画散点图可以看出,zx有很强的线性相关关系,请求出zx的线性回归方程(回归系数精确到0.01);

(II)y关于x的回归方程,并预测某辆该款汽车当使用年数为10年时售价约为多少.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,动点满足.

1)求动点的轨迹方程,并说明方程表示的曲线类型;

2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数

(Ⅰ)若是函数的一个极值点,求此时函数的单调区间;

(Ⅱ)若对任意的,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案