精英家教网 > 高中数学 > 题目详情
(2003•朝阳区一模)某加油站需要制造一个容积为20πm3的圆柱形储油罐,已知用来制作底面的铁板每平方米价格为40元,用来制作侧面的铁板每平方米价格为32元,若不计制作损耗.
(Ⅰ)问储油罐底面半径和高各为多少时,制作的储油罐的材料成本价最低?
(Ⅱ)若制作的储油罐底面铁板半径不能超过1.8m,那么储油罐底面半径的长为多少时,可使制作储油罐的材料成本价最低?
分析:(Ⅰ)设圆柱形储油罐的底面半径为x米,高为h米,由题意求出h的表达式,再求出材料成本价为y的表达式,根据基本不等式求出y的最小值,以及对应的x的值;
(Ⅱ)根据(Ⅰ)知,当0<x≤1.8时需要判断函数在(0,1.8]上的单调性,根据单调性的定义证明步骤:取值、作差、变形、定号、下结论,得到函数的单调性,再求出函数的最小值.
解答:解:(I)设圆柱形储油罐的底面半径为x米,高为h米,材料成本价为y元.
由题意得,πx2h=20π,则h=
20π
πx2
=
20
x2

∴y=2πx2•40+2πx•h•32…(2分)
=80π(x2+
16
x
)
=80π(x2+
8
x
+
8
x
)
…(4分)
≥80π•3•
3x2
8
x
8
x
…(6分)=960π(元).
当且仅当x2=
8
x
,即x=2,h=5时取等号.
答:当储油罐的底面半径为2米,高为5米,材料成本价最低.…(8分)
(II)解:由(Ⅰ)知,f(x)=80π(x2+
16
x
)
当x=2时,y取最小值960π元,
当x不超过1.8米时,即0<x≤1.8.
下面探讨函数f(x)=80π(x2+
16
x
)
在(0,1.8]上的单调性.…(10分)
设0<x1<x2≤1.8,
f(x2)-f(x1)=80π(
x
2
2
+
16
x2
)-80π(
x
2
1
+
16
x1
)

=80π(x2-x1)
(x1+x2)x1x2-16
x1x2
…(12分)
∵0<x1<x2≤1.8<2,
x2-x1>0,
(x1+x2)x1x2-16
x1x2
<0

∴f(x2)-f(x1)<0,f(x2)<f(x1).
则函数f(x)=80π(x2+
16
x
)
在(0,1.8]上是减函数.
答:当储油罐底面铁板半径为1.8米,材料成本价最低.…(14分)
点评:本题考查了函数的实际应用,利用基本不等式求函数的最值,以及根据单调性的定义证明步骤:取值、作差、变形、定号、下结论,得到函数的单调性,再求出函数的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2003•朝阳区一模)复数
5
1+2i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)若a>b>0,集合M={x|b<x<
a+b
2
},N={x|
ab
<x<a
},则M∩N表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)设a、b、c为三条不同的直线,α、β、γ为三个不同的平面,下面四个命题中真命题的个数是(  )
(1)若α⊥β,β⊥γ,则α∥β.
(2)若a⊥b,b⊥c,则a∥c或a⊥c.
(3)若a?α,b、c?β,a⊥b,a⊥c,则α⊥β.
(4)若a⊥α,b?β,a∥b,则α⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)函数y=arcsin(sinx)的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是(  )

查看答案和解析>>

同步练习册答案