精英家教网 > 高中数学 > 题目详情

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大.

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.

③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,

.正确的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】分类变量AB的随机变量越大,说明“AB有关系”的可信度越大,正确;

②∵两边取对数,可得lny=ln()=lnc+ln=lnc+kx

z=lny,可得z=lnc+kx

z=0.3x+4,∴lnc=4,k=0.3

c=e4.即正确;

根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,

b=2, =1, =3,则a=1,正确。

故正确的为①②③,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

(1)如果的展开式中各项系数之和为128,则展开式中的系数是-21;

(2)用相关指数来刻画回归效果, 的值越大,说明模型的拟合效果越差;

(3)若上的奇函数,且满足,则的图象关于对称;

(4)一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为,且,已知他投篮一次得分的数学期望为2,则的最小值为

其中正确结论的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药在试验药效时发现:如果成人按规定剂量服用那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.

(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);

(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确立下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中

(Ⅰ)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;

(Ⅲ)已知这种产品的年利率的关系为.根据(Ⅱ)的结果回答下列问题:

(i)年宣传费时,年销售量及利润的预报值是多少?

(ii)年宣传费为何值时,年利率的预报值最大?

附:对于一组数据……,其回归线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+12f(an-1)+1,且a1=3,an>1.

(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;

(2)设cn=nbn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的天宫一号点.已知函数f(x)=ax2+(b-7)x+18的两个天宫一号点分别是-3和2.

(1)求a,b的值及f(x)的表达式;

(2)当函数f(x)的定义域是[t,t+1]时,求函数f(x)的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为(-3,3),

满足f(-x)=-f(x),且对任意xy,都有f(x)-f(y)=f(xy),当x<0时,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判断f(x)的单调性,并证明;

(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

同步练习册答案