精英家教网 > 高中数学 > 题目详情
6.化简:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

分析 原式被开方数分子分母都等于分母,利用同角三角函数间的基本关系及二次根式性质化简,即可得到结果.

解答 解:∵π<α<$\frac{3π}{2}$,∴sinα<0,
则原式=$\frac{\sqrt{1-co{s}^{2}α}}{1-cosα}$+$\frac{\sqrt{1-co{s}^{2}α}}{1+cosα}$=$\frac{-sinα}{1-cosα}$+$\frac{-sinα}{1+cosα}$=$\frac{-sinα-sinαcosα-sinα+sinαcosα}{si{n}^{2}α}$
=-$\frac{2}{sinα}$.
故答案为:-$\frac{2}{sinα}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.化简$\sqrt{1-si{n}^{2}α}$的结果为(  )
A.sinαB.-sinαC.±cosαD.-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=e|-lnx|-|x-1|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=ex,则$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.eB.2eC.-eD.$\frac{1}{2}e$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:对任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命题,“p且q”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正方体ABCD-A1B1C1D1中,O为正方形ABCD中心,则A1O与平面ABCD所成角的正切值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$(x∈R).
(1)判断函数f(x)的奇偶性;
(2)用定义判断函数f(x)的单调性;
(3)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$与向量$\overrightarrow m$夹角为$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$与向量$\overrightarrow q=(1\;,\;\;0)$的夹角为$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C为△ABC的内角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范围.

查看答案和解析>>

同步练习册答案