精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

【答案】(1);(2)上界构成集合为;(3)实数的取值范围为.

【解析】试题分析:(1,得;(2)函数在区间上单调递增,所以值域为,所以所有上界构成集合为;(3)上恒成立,分离参数得上恒成立,所以的取值范围为.

试题解析:

(1)因为函数为奇函数,

所以,即

,得,而当时不合题意,故.

(2)由(1)得:

易知,函数在区间上单调递增,

所以函数在区间上单调递增,

所以函数在区间上的值域为

所以,故函数在区间上的所有上界构成集合为.

(3)由题意知, 上恒成立.

.

上恒成立.

,由

所以上递减, 上递增,

上的最大值为 上的最小值为.

所以实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某球星在三分球大赛中命中率为 ,假设三分球大赛中总计投出8球,投中一球得3分,投丢一球扣一分,则该球星得分的期望与方差分别为(
A.16,32
B.8,32
C.8,8
D.32,32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(m1,2)B(1,1)C(3m2m1)

(1)ABC三点共线,求实数m的值;

(2)ABBC,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定义域;
(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若曲线 在点 处的切线斜率为3,且 有极值,求函数 的解析式;
(2)在(1)的条件下,求函数 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又叫属相,是中国与十二地支相配以人出生年份的十二种动物,包括鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的属相均是龙,丁、戊的属相均是虎,己的属相是猴,现从这六人中随机选出三人,则所选出的三人的属相互不相同的概率等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当设集合求集合

(2)在(1)的条件下,若且满足求实数的取值范围

(3)若对任意的存在使不等式恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案