精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

【答案】1直线的普通方程为: 2

【解析】试题分析:(1因为 故可得曲线直线的普通方程为: ;(2由点到直线的距离公式可得: .

试题解析

1

因为 故可得曲线

消去参数可得直线的普通方程为:

2由(1可得曲线的参数方程为: 为参数)

由点到直线的距离公式可得:

据条件可知由于分如下情况:

时,由

时,由

综上 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.

附:

,其中

1)求频率分布直方图中的值;

2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?

甲地区

乙地区

合计

优质树苗

5

非优质树苗

25

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对排放量超过130g/km型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类型品牌抽取5辆进行排放量检测,记录如下(单位:g/km):

80

110

120

140

150

100

120

x

y

160

经测算发现,乙品牌车排放量的平均值为.

)从被检测的5辆甲类品牌中任取2辆,则至少有一辆排放量超标的概率是多少?

)若乙类品牌的车比甲类品牌的的排放量的稳定性要好,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.

1)求甲、乙两位同学总共正确作答3个题目的概率;

2)若甲、乙两位同学答对题目个数分别是,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有橡皮泥制作的底面半径为5,高为9的圆锥和底面半径为,高为8的圆柱各一个.若将它们重新制作成总体积与各自的高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为_________;若新圆锥的内接正三棱柱表面积取到最大值,则此正三棱柱的底面边长为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足,且时,,则函数上的所有零点之和为(

A.B.C.D.

查看答案和解析>>

同步练习册答案