精英家教网 > 高中数学 > 题目详情
8.若α为锐角,且sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则sinα的值为$\frac{\sqrt{2}+\sqrt{30}}{8}$.

分析 由同角三角函数基本关系可得cos(α-$\frac{π}{4}$)=$\frac{\sqrt{15}}{4}$,代入sinα=sin[(α-$\frac{π}{4}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin(α-$\frac{π}{4}$)+$\frac{\sqrt{2}}{2}$cos(α-$\frac{π}{4}$),计算可得.

解答 解:∵α为锐角,即0<α<$\frac{π}{2}$,∴-$\frac{π}{4}$<α-$\frac{π}{4}$<$\frac{π}{4}$,
又∵sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,∴cos(α-$\frac{π}{4}$)=$\frac{\sqrt{15}}{4}$,
∴sinα=sin[(α-$\frac{π}{4}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin(α-$\frac{π}{4}$)+$\frac{\sqrt{2}}{2}$cos(α-$\frac{π}{4}$)
=$\frac{\sqrt{2}}{2}×\frac{1}{4}+\frac{\sqrt{2}}{2}×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{2}+\sqrt{30}}{8}$
故答案为:$\frac{\sqrt{2}+\sqrt{30}}{8}$

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{{-x}^{2}+ax(x≤1)}\\{{a}^{2}x-7a+14(x>1)}\end{array}\right.$,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2).
(I)求实数a的取值集合A;
(Ⅱ)若a∈A,且函数g(x)=1g[ax2+(a+3)x+4]的值域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=x2+2(a-2)x+5在(4,+∞)上是单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(其中a为常数).
(1)求f(x)的单调减区间;
(2)求出使f(x)取得最大值时x的集合;
(3)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3•2x+$\frac{3}{{2}^{x}}$,x∈R.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)利用函数单调性定义证明:f(x)在(0,+∞)上是增函数;
(3)若f(x)≥k+log2$\frac{8}{m}$•log2(2m)(m>0,k∈R)对任意的x∈R,任意的m∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出如下说法:
①命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”
②若命题p:?x∈R,x2+x+1=0,则¬p:?x∈R,x2+x+1≠0
③若p∧q为假命题,则p,q均为假命题
④“x>2”是“x2-3x+2>0”的充分不必要条件
其中正确命题的序号有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-x+1,则g(x)=f(2x)的递减区间是(  )
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>0,函数f(x)=eaxsinx(x∈[0,+∞)).记xn为f(x)的从小到大的第n(n∈N*)个极值点,则数列{f(xn)}是(  )
A.等差数列,公差为eaxB.等差数列,公差为-eax
C.等比数列,公比为eaxD.等比数列,公比为-eax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正方体ABCD-A1B1C1D1的棱长为5.则直线BC到平面ADD1A1的距离为5.

查看答案和解析>>

同步练习册答案