精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的可导函数,若函数F(x)=xf(x),满足F'(x)>0对x∈R恒成立,则下面四个结论中,所有正确结论的序号是(  )
①f(1)+f(-1)>0;  
②f(x)≥0对x∈R成立;
③f(x)可能是奇函数; 
④f(x)一定没有极值点.
分析:由于函数F(x)=xf(x),满足F′(x)>0对x∈R恒成立,则可知F(x)=xf(x)为R上的增函数,然后分别利用函数的性质进行判断.
解答:解:由于函数F(x)=xf(x),满足F′(x)>0对x∈R恒成立,则可知F(x)=xf(x)为R上的增函数,
则①f(1)>-f(-1)即f(1)+f(-1)>0;
②由于[xf(x)]′=f(x)+xf′(x)>0,
又由y=xf(x)单调递增,y=x也单调递增,则函数y=f(x)单调递增,故f′(x)≥0,
所以当x<0时,f(x)≥0成立,而当x≥0时,f(x)≥0不一定成立;
③因为奇函数在对称区间上的单调性相同,所以f(x)可能是奇函数;
④由y=xf(x)单调递增,y=x也单调递增,则函数y=f(x)单调递增,故f′(x)≥0,f(x)一定没有极值点.
故答案为 B
点评:本题以函数为载体,考查函数的单调性,考查导数知识的运用,解题的关键是利用导数判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案