精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥S-ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=数学公式
(I)求证:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

(I)证明:以A点为原点,AB为x轴,AD为y轴,AZ为z轴的空间直角坐标系,
如图所示.则依题意可知相关各点的坐标分别是:A(0,0,0),B(,0,0),
C(,1,0),D(0,1,0),S(0,0,1),
(2分)
(4分)


∴MN⊥平面ABN.(7分)
(II)解:设平面NBC的法向量
且又易知

令a=1,则(11分)
显然,就是平面ABN的法向量.

由图形知,二面角A-BN-C是钝角二面角(12分)
∴二面角A-BN-C的余弦值是-.(14分)
分析:(Ⅰ)建立空间直角坐标系,求出向量,计算
即可证明MN⊥平面ABN;
(II)求平面NBC的法向量,平面ABN的法向量,利用向量的数量积求得二面角A-BN-C的余弦值.
点评:本题考查向量法证明直线与平面的垂直,二面角的求法,考查学生计算能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面ABCD是边长为1的正方形,SA⊥平面ABCD,SA=2,E是侧棱SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面是边长为4的正方形,S在底面上的射影O落在正方形ABCD内,SO的长为3,O到AB,AD的距离分别为2和1,P是SC的中点.
(Ⅰ)求证:平面SOB⊥底面ABCD;
(Ⅱ)设Q是棱SA上的一点,若
AQ
=
3
4
AS
,求平面BPQ与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)(如图)已知四棱锥S-ABCD的底面ABCD是菱形,将面SAB,SAD,ABCD 展开成平面后的图形恰好为一正三角形S'SC.
(1)求证:在四棱锥S-ABCD中AB⊥SD.
(2)若AC长等于6,求异面直线AB与SC之间的距离.

查看答案和解析>>

同步练习册答案