精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若在上至少存在一点,使得成立,求的范围.

(Ⅰ)上单调递减,在上单调递增;(Ⅱ)的取值范围为

解析试题分析:(Ⅰ)对求导来判断单调区间;(Ⅱ)在上至少存在一点,使得成立,即不等式上有解,原不等式整理得:),转化为求的最小值问题.
试题解析:(Ⅰ)解:,解得:上单调递减,在上单调递增;
(Ⅱ),在上至少存在一点,使得成立,即:不等式有解,也即:)有解,记,则,令单调递增,,即上恒成立,因此,在,在,即单调递减,在单调递增,,所以,的取值范围为
方法二:令,则

①当时,上为增函数,在上为减函数,由题意可知
②当时,上为增函数,在上为减函数,,由题意可知
③当时,上为增函数,在上为减函数,,由题意可知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2) 若恒成立,求的范围.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的总成立,求实数的取值范围;
⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)求的单调递增区间;
(Ⅱ)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,试求函数的单调区间;
(2)过坐标原点作曲线的切线,证明:切点的横坐标为1;
(3)令,若函数在区间(0,1]上是减函数,求的取值范围.

查看答案和解析>>

同步练习册答案