精英家教网 > 高中数学 > 题目详情
已知A、B、C的坐标分别是A(3,0),B(0,3),C(cosα,sinα ).
(Ⅰ)若|
AC
|=|
BC
|
,求角α 的值;
(Ⅱ)若
AC
BC
=-1
,求
2sin2α+sin2α
1+tanα
的值.
分析:(Ⅰ)先根据A、B、C的坐标分别是A(3,0),B(0,3),C(cosα,sinα ),求出
AC
BC
的坐标,再利用|
AC
|=|
BC
|
,就可求出角α 的三角函数值,再根据角α 的三角函数值,求角α 的值.
(Ⅱ)根据
AC
BC
=-1
以及前面所求
AC
BC
的坐标,就可化简  
2sin2α+sin2α
1+tanα
,进而求值.
解答:解:(Ⅰ)∵A、B、C的坐标分别是A(3,0),B(0,3),C(cosα,sinα ).
AC
=(cosα-3,sinα),
BC
=(cosα,sinα-3)
|AC
|
=
(cosα-3)2+(sinα)2
|
BC
|
=
(cosα)2+(sinα-3)2

|
AC
|=|
BC
|
,∴
(cosα-3)2+(sinα)2
=
(cosα)2+(sinα-3)2

即,(cosα-3)2+(sinα)2=(cosα)2+(sinα-3)2
∴sinα=cosα,∴tanα=1,∴α=kπ+
π
4
,k∈Z

(Ⅱ)由(1)知,
AC
=(cosα-3,sinα),
BC
=(cosα,sinα-3)
AC
BC
=(cosα-3)cosα+sinα(sinα-3)=1-3(sinα+cosα)=-1
∴sinα+cosα=
2
3
,∴(sinα+cosα)2=1+2sinαcosα=(
2
3
)
2

∴2sinαcosα=-
5
9

2sin2α+sin2α
1+tanα
=
2sin2α+2sinαcosα
1+
sinα
cosα
=2sinαcosα=-
5
9
点评:本题考查了向量的模,以及数量积的计算,做题时要细心,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(-π,0),且|
AC
|=|
BC
|,求角α的大小;
(2)若
AC
BC
,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C的坐标分别为A(4,0)、B(0,4)、C(3cosα,3sinα)
(Ⅰ)若a∈(-π,0),且|
AC
|=|
BC
|.求角α的值;
(Ⅱ)若
AC
BC
=0.求
2sina+sin2a
1+tana
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C的坐标分别为A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
2
)

(Ⅰ)若
OC
AB
,O为坐标原点,求角α的值;
(Ⅱ)若
AC
BC
,求
1+
2
sin(2α-
π
4
)
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P的坐标是(x,0,y),若PA⊥平面ABC,则点P的坐标是
 

查看答案和解析>>

同步练习册答案