精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+1-a
a-x
(a∈R)

(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈[-2,-
3
2
]

(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.
分析:(1)设出P为函数上任意一点,然后将P的坐标代入已知函数,写出P关于(a,-1)的对称点P'(2a-x0,-2-y0).然后代入f(x)进行验证关于(a,-1)成中心对称图形.
(2)根据(1)的结论,把f(x)代入题目,然后验证[f(x)+2][f(x)+
3
2
]≤0
即可证明
(3)(i)根据题意,把f(x)=x有解转化为△>0或△=0两种情况,并进行分析.
    (ii)当x≠a时,(1+a)x=a2+a-1无解,此时即可求出a的值.
解答:解:(1)设P(xo,yo)是函数y=f(x)图象上一点,则yo=
xo+1-a
a-xo

点P关于(a,-1)的对称点P'(2a-x0,-2-y0).
f(2a-xo)=
2a-x0+1-a
a-2a+x0
=
a-x0+1
x0-a
,-2-yo=
a-x0+1
x0-a

∴-2-y0=f(2a-x0).即P′点在函数y=f(x)的图象上.
所以,函数y=f(x)的图象关于点(a,-1)成中心对称图形.(2)∵[f(x)+2][f(x)+
3
2
]=
a-x+1
a-x
a+2-x
2(a-x)
=
(x-a-1)(x-a-2)
2(a-x)2

又x∈[a+1,a+2],∴(x-a-1)(x-a-2)≤0.2(a-x)2>0,
[f(x)+2][f(x)+
3
2
]≤0
,∴-2≤f(x)≤-
3
2


(3)(i)根据题意,只需x≠a时,f(x)=x有解.
x+1-a
a-x
=x
有解,
即x2+(1-a)x+1-a=0有不等于a的解
.∴①△>0或②△=0并且x≠a,
①由△>0得a<-3或a>1,②由△=0得a=-3或a=1,
此时,x分别为-2或0.符合题意.综上,a≤-3或a≥1.
(ii)根据题意,知:x≠a时,
x+1-a
a-x
=a
无解,
即x≠a时,(1+a)x=a2+a-1无解,由于x=a不是方程(1+a)x=a2+a-1的解,
所以,对于任意x∈R.(1+a)x=a2+a-1无解.∴a=-1.
点评:本题考查函数模型的选择与应用,通过对实际问题的分析,构造数学模型从而解决问题.本题需要把点P关于(a,-1)的对称点P'(2a-x0,-2-y0)代入函数.进行化简.并注明取值范围.需要对知识熟练的掌握并应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案