精英家教网 > 高中数学 > 题目详情
已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
    线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  
 s所在直线平分线段s1  
分析:(1)(b,c)在直线2x+y=0上,求出方程的虚根,代入圆的方程成立,就证明Pz在圆C1:(x-1)2+y2=1上;
(2)①求出虚根,虚根在定圆C:(x-m)2+y2=r2(m、r∈R,r>0),推出c=-2mb+r2-m2,则存在唯一的线段s满足(b,c)在线段s上;②(b,c)是线段s上一点(非端点),实系数方程为x2+2bx-2mb+r2-m2=0,b∈(-m-r,-m+r)此时△<0,求出方程的根Pz,可推出Pz在圆C上.
(3)由(2)知线段s与圆C之间确定了一种对应关系,直接填写表.
解答:解:(1)由题意可得2b+c=0,
解方程x2+2bx-2b=0,得z=-b±
-2b-b2
 i

∴点Pz( -b,  
-2b-b2
 )
Pz( -b,  -
-2b-b2
 )

将点Pz代入圆C1的方程,等号成立,
∴Pz在圆C1:(x-1)2+y2=1上
(2)当△<0,即b2<c时,
解得z=-b±
c-b2
i

∴点Pz( -b,  
c-b2
 )
Pz( -b,  -
c-b2
 )

由题意可得(-b-m)2+c-b2=r2
整理后得c=-2mb+r2-m2
∵△=4(b2-c)<0,(b+m)2+c-b2=r2,∴b∈(-m-r,-m+r)
∴线段s为:c=-2mb+r2-m2,b∈[-m-r,-m+r]
若(b,c)是线段s上一点(非端点),
则实系数方程为x2+2bx-2mb+r2-m2=0,b∈(-m-r,-m+r)
此时△<0,且点Pz(-b,
r2-(b+m)2
)

Pz(-b,-
r2-(b+m)2
)
在圆C上
(3)表
      线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  m=1,r≠1
 s所在直线平分线段s1  r2-(m-1)2=1,m≠1
 线段s与线段s1长度相等  (1+4m2)r2=5
点评:本题考查复数的基本概念,直线和圆的方程的应用,考查学生分析问题解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2008年普通高等学校招生全国统一考试(上海卷)、数学 题型:044

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz).

(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;

(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上.写出线段s的表达式,并说明理由;

(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写下表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz),
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上。写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段)。

查看答案和解析>>

科目:高中数学 来源:2010年上海市闸北区高考数学一模试卷(文科)(解析版) 题型:解答题

已知复数z1满足(1+i)z1=3+i,复数z满足
(1)求复数z
(2)设z是关于x的实系数方程x2-px+q=0的一个根,求p、q的值.

查看答案和解析>>

科目:高中数学 来源:2008年上海市春季高考数学试卷(解析版) 题型:解答题

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

同步练习册答案