精英家教网 > 高中数学 > 题目详情
设a>0,b>0,且2a+b=1,则
2
a
+
1
b
的最小值是
9
9
分析:把要求的式子变形为
2(2a+b)
a
+
2a+b
b
=4+1+
2b
a
+
2a
b
,再利用基本不等式求得它的最小值.
解答:解:设a>0,b>0,且2a+b=1,则
2
a
+
1
b
=
2(2a+b)
a
+
2a+b
b
=4+1+
2b
a
+
2a
b
≥5+4=9,
当且仅当
2b
a
=
2a
b
 时,取得等号,故
2
a
+
1
b
的最小值为 9,
故答案为 9.
点评:本题主要考查基本不等式的应用,式子的变形,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,且a≠b,试比较aabb与abba的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且a+b=1,求证:(a+
1
a
)2+(b+
1
b
)2
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设a>0,b>0,且a+b=2,
1
a
+
1
b
的最小值为m,记满足x2+y2≤3m的所有整点坐标为(xi,yi)(i=1,2,3,…,n),则
n
i=1
|xiyi|
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,且a+b≤4,则有(  )
A、
1
ab
1
2
B、
ab
≥2
C、
1
a
+
1
b
≥1
D、
1
a+b
1
4

查看答案和解析>>

同步练习册答案