精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1﹣x)=f(1+x),且方程f(x)=2x有两个相等实根;设g(x)= x3﹣x﹣f(x).
(1)求f(x)的解析式;
(2)求g(x)在[0,3]上的最值.

【答案】
(1)解:二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1﹣x)=f(1+x),

故对称轴x=﹣ =1①,

方程f(x)=2x有两个相等实根,即ax2+(b﹣2)x=0有两个相等实根,

故△=(b﹣2)2=0,解得:b=2,

将b=2代入①,解得:a=﹣1,

故f(x)=﹣x2+2x;


(2)解:g(x)= x3﹣x﹣f(x)= x3+x2﹣3x,

g′(x)=x2+2x﹣3=(x+3)(x﹣1),

令g′(x)>0,解得:x>1或x<﹣3,

令g′(x)<0,解得:﹣3<x<1,

∴g(x)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增,

∴g(x)在[0,1)递减,在(1,3]递增,

∴g(x)最小值=g(1)=﹣ ,而g(0)=0,g(3)=9,故g(x)最大值=9


【解析】(1)根据函数的对称轴得到﹣ =1,根据方程f(x)=2x有两个相等实根,求出b的值,从而求出a的值,求出函数的表达式;(2)求出g(x)的解析式,根据函数的单调性求出函数的单调区间,从而求出函数在闭区间上的最值即可.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )

A. 甲应付 B. 乙应付

C. 丙应付 D. 三者中甲付的钱最多,丙付的钱最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;

(2)已知数列的通项公式是,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式中,正确的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2﹣4在x=2处取得极值,若m,n∈[0,1],则f'(n)+f(m)的最大值是(
A.﹣9
B.﹣1
C.1
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:已知在全部人中随机抽取人,抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;

(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率。下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

(参考公式: ,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

()若在区间上是单调函数,求实数的取值范围;

()函数,若使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计60吨厨余垃圾,假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分别为x,y,z,其中x>0,x+y+z=60,则数据x,y,z的标准差的最大值为 . (注:方差 ,其中 为x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点M(x,y)与定点F(1,0)的距离和它到直线l:x=2的距离的比为
(Ⅰ)求点M的轨迹.
(Ⅱ)是否存在点M到直线 +y=1的距离最大?最大距离是多少?

查看答案和解析>>

同步练习册答案