精英家教网 > 高中数学 > 题目详情
设f(x)=ln(2x-1),若f(x)在x0处的导数f′(x0)=1,则x0的值为(  )
分析:直接求出原函数的导函数,由f′(x0)=1列式求解x0的值.
解答:解:由f(x)=ln(2x-1),得f(x)=
2
2x-1

f(x0)=
2
2x0-1
=1
,解得:x0=
3
2

故选B.
点评:本题考查了简单的复合函数求导,关键是不要忘记对内层函数求导,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)求函数f(x)的单调区间;(2)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ln(1+x)-x-ax2
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间[-
1
2
,-
1
3
]
上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)设f(x)=ln(x+1)+
x+1
+ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=
3
2
x在(0,0)点相切.
(I)求a,b的值;
(II)证明:当0<x<2时,f(x)<
9x
x+6

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ln(x+1),(x>-1)
(1)讨论函数g(x)=af(x)-
1
2
x2
(a≥0)的单调性.
(2)求证:(1+
1
1
)(1+
1
2
)(1+
1
3
)…(1+
1
n
)<e
n+2
2
(n∈N*

查看答案和解析>>

同步练习册答案