精英家教网 > 高中数学 > 题目详情
设f(x)=
x
e-2+x2
,g(x)=
ex
x
,对?x1x2R+,有
f(x1)
k
g(x2)
k+1
恒成立,
 
则正数的k取值范围(  )
分析:当x1>0,x2>0时,
f(x1)
k
g(x2)
k+1
恒成立,则只要
f(x1)
k
 max
g(x2)
k+1
 min
即可,从而对函数f(x)利用基本不等式求解最大值,对函数g(x)利用导数判断单调性,进而求解函数g(x)的最小值,代入可求k的范围
解答:解:当x>0时,由基本不等式可得,f(x)=
x
e-2+x2
=
1
x+
1
e2x
1
2
x•
1
e2x
=
e
2

g(x)=
ex
x
g(x)=
(x -1)ex
x2

当x≥1时,g′(x)≥0;x<1时g′(x)<0
∴g(x)在(-∞,1)单调递减,在[1,+∞)单调递增
从而可得当x=1时函数g(x)有最小值e
当x1>0,x2>0时,
f(x1)
k
g(x2)
k+1
恒成立,且k>0
则只要
f(x1)
k
 max
g(x2)
k+1
 min
即可
e
2k
e
k+1
,解可得k≥1
故选:C
点评:本题主要考查了由函数的恒成立问题求解参数的取值范围的问题,解决问题的关键是转化为求解函数的最值,还要注意在本题中求解函数最值时用的两种方法:基本不等式及由导数判断函数的单调性,结合单调性质求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x
e-2+x2
,g(x)=
ex
x
,对?x1x2R+,有
f(x1)
k
g(x2)
k+1
恒成立,
 
则正数的k取值范围(  )
A.(0,1)B.(0,+∞)C.[1,+∞)D.[
1
2e2-1
,+∞)

查看答案和解析>>

同步练习册答案