精英家教网 > 高中数学 > 题目详情
(2009•大连一模)若椭圆
x2
2a2
+
y2
2b2
=1
(a>b>0)的焦点与双曲线
y2
a2
-
x2
b2
=1
的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为(  )
分析:根据椭圆
x2
2a2
+
y2
2b2
=1
(a>b>0)的焦点与双曲线
y2
a2
-
x2
b2
=1
的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.
解答:解:∵椭圆
x2
2a2
+
y2
2b2
=1
(a>b>0)的焦点与双曲线
y2
a2
-
x2
b2
=1
的焦点恰好是一个正方形的四个顶点
∴2a2-2b2=a2+b2,即a2=3b2
a
b
=
3

抛物线ay=bx2的方程可化为:x2=
a
b
y,即x2=
3
y,
其焦点坐标为:(0,
3
4
).
故选D.
点评:本题考查的知识点是椭圆的简单性质、双曲线的简单性质、抛物线的简单性质,其中将抛物线方程化为标准方程是解答本题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连一模)设全集U=R,若A={x|
1
x
>0},则?UA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)二项式(1+i)10(其中i2=-1)展开的第三项的虚部为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)若tanα=2,则sinαcosα的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)在平面直角坐标系中,不等式组
x+y≥0
x-y≥0,(a为常数)
x≤a
所表示的平面区域的面积是4,动点(x,y)在该区域内,则x+2y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)已知正方体ABCD-A1B1C1D1如图所示,则直线B1D和CD1所成的角为(  )

查看答案和解析>>

同步练习册答案