精英家教网 > 高中数学 > 题目详情
1.在正项等比数列{an}中,lga3+lga6+lga9=3,则a1a11的值是100.

分析 由对数性质得lga3+lga6+lga9=lg(a3a6a9)=3,从而利用等比数列性质得a6=10,由此能出a1a11的值.

解答 解:∵在正项等比数列{an}中,lga3+lga6+lga9=3,
∴lga3+lga6+lga9=lg(a3a6a9)=3,
∴${{a}_{6}}^{3}=1000$,解得a6=10,
∴a1a11=${{a}_{6}}^{2}=1{0}^{2}=100$.
故答案为:100.

点评 本题考查等比数列中两项积的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x-x2≥0},B={x|y=lg(2x-1)},则A∩B=(  )
A.$[{0,\frac{1}{2}})$B.[0,1]C.$({\frac{1}{2},1}]$D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左焦点和右焦点,且三个内角A,B,C满足关系式sinB-sin A=sinC.
(1)求线段AB的长度;
(2)求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}的各项均为正数,且a2=2,a4=8,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x=2y2的准线方程是(  )
A.y=-$\frac{1}{2}$B.x=-$\frac{1}{8}$C.y=$\frac{1}{2}$D.x=$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆E的顶点四边形的面积为16.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的顶点P(0,b)的直线l交椭圆于另一点M,交x轴于点N,若|PN|、|PM|、|MN|成等比数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$cos({\frac{π}{2}+α})=\frac{{2\sqrt{2}}}{3}$,$α∈({\frac{π}{2},\frac{3π}{2}})$,则tanα=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正三角形ABC边长为2,以点A为圆心,1为半径作圆,PQ是该圆任意一条直径,且有:$\overrightarrow{BA}=\overrightarrow a\;,\;\;\overrightarrow{BC}=\overrightarrow b\;,\;\;\overrightarrow{AP}$=$\overrightarrow p$,求$\overrightarrow{BP}•\overrightarrow{CQ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,AB1⊥平面ABC,且AB=BC=AB1=2.
(Ⅰ)证明:平面C1CBB1⊥平面A1ABB1
(Ⅱ)若点P为A1C1的中点,求直线BP与平面A1ACC1所成角的正弦值.

查看答案和解析>>

同步练习册答案