精英家教网 > 高中数学 > 题目详情
(理科做)(1)证明:面APC⊥面BEF;
(2)求平面PBC与平面PCD夹角的余弦值.
证明:
(理)(1)连接EP、EC,由题可知
BP=BC=2
2

∴BF⊥PC,又△PAE≌△CDE,∴EP=EC,
∴EF⊥PC,且EF∩BF=F,
故PC⊥面BEF,又PC?面APC,
∴面APC⊥面BEF;
(2)在△PCD中作DG⊥PC交PC于点G,则DG=
PD•CD
PC
=
2×2
3
4
=
3

又由DG2=CD•PG得CG=1,
∴点G为CF的中点,取BC中点H,
连接GH、HD,则GH\mathoplimits=BF,GH=1,
∴GH⊥PC,∠HGD为二面角的平面角,
Rt△CDH中可得HD=
6

∴COS∠HGD=
3+1-6
2×1×
3
=-
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


四棱锥S-ABCD的底面ABCD是正方形,侧棱SC的中点E在底面内的射影恰好是正方形ABCD的中心O,顶点A在截面SBD内的射影恰好是△SBD的重心G.
(1)求直线SO与底面ABCD所成角的正切值;
(2)设AB=a,求此四棱锥过点C,D,G的截面面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥的三视图如图所示.

(1)求这个四棱锥的全面积及体积;
(2)求证:PA⊥BD;
(3)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30°?若存在,求
|DQ|
|DP|
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求证:MN⊥AB;
(2)求二面角P-CD-A的大小;
(3)求三棱锥D-AMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥底面边长为a,侧棱与底面成角为60°,过底面一边作一截面使其与底面成30°的二面角,则此截面的面积为(  )
A.
3
4
a2
B.
3
3
a2
C.
1
3
a2
D.
3
8
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱AA1长为ka(k>0),E为侧棱BB1的中点,记以AD1为棱,EAD1,A1AD1为面的二面角大小为θ.
(1)是否存在k值,使直线AE⊥平面A1D1E,若存在,求出k值;若不存在,说明理由;
(2)试比较tanθ与2
2
的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥P一ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.
(1)求四棱锥P一ABCD的体积:
(2)求二面角C-PB-A大小;
(3)M为棱PB上的点,当PM长为何值时,CM⊥PA?

查看答案和解析>>

同步练习册答案