精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:x+y﹣4=0,定点P(2,0),E,F分别是直线l和y轴上的动点,则△PEF的周长的最小值为(  )
A.2
B.6
C.3
D.2

【答案】A
【解析】解:如图所示:设P′是点P(2,0)关于直线l:x+y﹣4=0的对称点,设P′(a,b),
则由 , 可得P′(4,2).
设P′关于y轴的对称点为P″(m,n),易得P″(﹣4,2),则直线PP″和y轴的交点为F,
FP′和直线l的交点为E,则此时,
△PEF的周长为EF+EP+PF=EF+EP′+PF=P′F+PF=P″F+PF=PP″=2
为最小值,
故选:A.

求得点P(2,0)关于直线l:x+y﹣4=0的对称点P′的坐标,再求得P′关于y轴的对称点为P″的坐标,可得此时△PEF的周长的最小值为PP″,计算求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点到直线的距离是它到点的距离的倍.

(1)求动点的轨迹的方程;

(2)设轨迹上一动点满足: ,其中是轨迹上的点,且直线的斜率之积为,若为一动点, 为两定点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣x)的定义域为(  )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系过椭圆 )焦点的直线两点 的中点的斜率为9.

(Ⅰ)求的方程

(Ⅱ)的左右顶点 上的两点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点.
(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F分别是AB,CD上的点,EF∥BC,AE=x,G是BC的中点,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)当x=2时,①求证:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱锥D﹣FBC的体积是否可能等于几何体ABE﹣FDC体积的一半?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)设全集U=AUB,求(UA)U(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱底面 是棱的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求平面将此三棱柱分成的两部分的体积之比.

查看答案和解析>>

同步练习册答案