解:(1)由题意可得a>0,且
≤1,所有的取法共有6×6=36 种.
当a=1 时,b 只能取-2,-1这两个值.当a=2 时,b 只能取-2,-1,1 这三个值.
当a=3 时,b 只能取-2,-1,1 这三个值.当a=4 时,b 只能取-2,-1,1,2 这四个值.
当a=5 时,b 只能取-2,-1,1,2 这四个值.
故满足函数y=f(x)在[1,+∞)上是增函数的取法有 2+3+3+4+4=16种,
故所求事件的概率为
=
,故答案为:
.
(2)由条件可得,实验的所有结果构成的区域为Q={(a,b)|
},如图所示,
该区域为一个三角形区域,其面积等于S
△OMN=
=32.
满足函数y=f(x)在[1,+∞)上是增函数的基本事件构成的区域为A={(a,b)|
},
由
求得交点的坐标为P(
,
),故区域A的面积为 S
△POM=
=
,
故所求的事件的概率为 P=
=
=
.
分析:(1)分a=1,2,3,4,5 这五种情况来研究a>0,且
≤1的取法共有16种,而所有的取法共有6×6=36 种,从而求得所求事件的概率.
(2)由条件可得,实验的所有结果构成的区域Q 的面积等于S
△OMN=
=32,满足条件的区域A的面积为
S
△POM=
=
,故所求的事件的概率为 P=
,运算求得结果.
点评:本题考查等可能事件的概率,二次函数的单调区间以及简单的线性规划问题,画出实验的所有结果构成的区域Q
和区域A 的图形,是解题的关键.