精英家教网 > 高中数学 > 题目详情

已知关于x的一元二次函数f(x)=ax2-4bx+1
(1)设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4,},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域数学公式内的随机点,求函数y=f(x)在[1,+∞)上是增函数的概率.

解:(1)由题意可得a>0,且 ≤1,所有的取法共有6×6=36 种.
当a=1 时,b 只能取-2,-1这两个值.当a=2 时,b 只能取-2,-1,1 这三个值.
当a=3 时,b 只能取-2,-1,1 这三个值.当a=4 时,b 只能取-2,-1,1,2 这四个值.
当a=5 时,b 只能取-2,-1,1,2 这四个值.
故满足函数y=f(x)在[1,+∞)上是增函数的取法有 2+3+3+4+4=16种,
故所求事件的概率为 =,故答案为:
(2)由条件可得,实验的所有结果构成的区域为Q={(a,b)| },如图所示,
该区域为一个三角形区域,其面积等于S△OMN==32.
满足函数y=f(x)在[1,+∞)上是增函数的基本事件构成的区域为A={(a,b)| },
求得交点的坐标为P(),故区域A的面积为 S△POM==
故所求的事件的概率为 P===

分析:(1)分a=1,2,3,4,5 这五种情况来研究a>0,且 ≤1的取法共有16种,而所有的取法共有6×6=36 种,从而求得所求事件的概率.
(2)由条件可得,实验的所有结果构成的区域Q 的面积等于S△OMN==32,满足条件的区域A的面积为
S△POM==,故所求的事件的概率为 P=,运算求得结果.
点评:本题考查等可能事件的概率,二次函数的单调区间以及简单的线性规划问题,画出实验的所有结果构成的区域Q
和区域A 的图形,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[|m+n|2上是增函数的概率;
(Ⅱ)设点(
1
2
|m+n|min=
2
2
)是区域
x+y-8≤0
x>0
y>0
内的随机点,求MD上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式cx+b
x
+a<0的解集为
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3

查看答案和解析>>

同步练习册答案