精英家教网 > 高中数学 > 题目详情
正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成角的大小为 _________ 
60°
连接A1D,由正方体的几何特征可得:A1D∥B1C,
则∠BA1D即为异面直线A1B与B1C所成的角,
连接BD,易得:
BD=A1D=A1B
故∠BA1D=60°
故答案为:60°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱柱中,的中点.
(1)求证:平面
(2)求证:
(3)在线段上是否存在点,当时,平面平面?若存在,求出的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ.
求证:l⊥γ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,底面

(1)证明:
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面为矩形,的中点.

(1)求证:
(2)在线段上是否存在一点,使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方体各棱所在直线中,与棱所在直线互为异面直线的有     条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(1)求证DM∥平面APC;
(2)求证平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.

查看答案和解析>>

同步练习册答案