精英家教网 > 高中数学 > 题目详情
已知区域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率
(1)求圆C及椭圆C1的方程;
(2)设圆C与y轴正半轴交于点D,O点为坐标原点,D,O中点为E,问是否存在直线l与椭圆C1交于M,N两点,且|ME|=|NE|?若存在,求出直线l与A1A2夹角θ的正切值的取值范围;若不存在,请说明理由.
【答案】分析:(1)先利用条件知道区域是直角三角形求出其外接圆C的方程,以及2a的值,再利用离心率即可求出椭圆C1的方程;
(2)把直线方程与椭圆C1的方程联立,求出M,N两点以及M,N中点与直线系数之间的关系,再把|ME|=|NE|转化为E在MN的中垂线上即可找到直线系数之间的等式,再代入前面求得的结论即可求出直线l与A1A2夹角θ的正切值的取值范围.
解答:解:(1)由题意可知,区域是以A1(-2,0),A2(2,0)及点为顶点的三角形,
∵A1M⊥A2M,∴△A1A2M为直角三角形.(2分)
∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为x2+y2=4.
∵2a=4,∴a=2.
,∴,可得
∴所求椭圆C1的方程是.(6分)
(2)点D坐标为(0,2),故点E坐标为(0,1),显然θ=0可满足要求;时不满足题意.(8分)
时,设l的方程为y=kx+m(k≠0),
,得(1+2k2)x2+4kmx+2m2-4=0,
由△=16k2m2-4(1+2k2)(2m2-4)>0,得4k2+2>m2;(10分)
设M(x1,y1),N(x2,y2),MN的中点为F(x,y),



解得m=-1-2k2.(12分)
∴4k2+2>(-1-2k22,得
综上,直线l与A1A2夹角θ的正切值的取值范围是.(14分)
点评:圆锥曲线的综合大题,主要考查解析几何的有关知识,以及分析问题与解决问题的能力.值得引起重视的一个现象是,经常出现一条或几条直线与两种圆锥曲线(包括圆)的位置关系问题,同时要注意其与平面几何、平面向量以及导数的知识的综合命题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知区域
y≥0
x-
3
y+2≥0
3
x+y-2
3
≤0
的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率e=
2
2

(1)求圆C及椭圆C1的方程;
(2)设圆C与y轴正半轴交于点D,O点为坐标原点,D,O中点为E,问是否存在直线l与椭圆C1交于M,N两点,且|ME|=|NE|?若存在,求出直线l与A1A2夹角θ的正切值的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷九文科数学 题型:解答题

(本小题满分14分)已知区域的外接圆Cx轴交于点A1A2,椭圆C1以线段A1A2为长轴,离心率

⑴求圆C及椭圆C1的方程;

⑵设圆轴正半轴交于点D,点为坐标原点,中点为,问是否存在直线与椭圆交于两点,且?若存在,求出直线夹角的正切值的取值范围;若不存在,请说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市高三(上)9月质量检测数学试卷 (解析版) 题型:解答题

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>

同步练习册答案