精英家教网 > 高中数学 > 题目详情

函数f(x)x=x0处没有极限有哪几种情况?一一列出并举出实例。

答案:
解析:

解:由定义。故f(x)在x=x0处没有极限有两大类型:

中至少有一个不存在。如x=1处就不存在。

均存在但不相等。如


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:013

已知函数f(x)x=1处的导数为3,则f(x)的解析式可能为(  )

  Af(x)=(x-1)2+3(x-1)2        Bf(x)=2(x-1)

  Cf(x)=2(x-1)2           Df(x)=x-1

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

已知函数f(x)x=1处的导数为3,则f(x)的解析式可能为(  )

  Af(x)=(x-1)2+3(x-1)2        Bf(x)=2(x-1)

  Cf(x)=2(x-1)2           Df(x)=x-1

 

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知函数f(x)在x=2处的导数为4,则f(x)的解析式可能为

A.f(x)=x2+4                                                    B.f(x)=2x

C.f(x)=x3                                                                                                                  D.f(x)=x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
1
2
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

同步练习册答案