精英家教网 > 高中数学 > 题目详情
16.在直角坐标平面内,直线l过点P(1,1),且倾斜角α=$\frac{π}{3}$.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.
(1)求圆C的直角坐标方程;
(2)设直线l与圆C交于A、B两点,求|PA|•|PB|的值.

分析 (1)由ρ2=x2+y2,ρsinθ=y,能求出圆C的直角坐标方程,由直线l过点P(1,1),且倾斜角α=$\frac{π}{3}$,能求出直线l的参数方程.
(2)求出直线的参数方程代入圆C方程x2+y2-4y=0,能求出|PA|•|PB|.

解答 解:(1)∵ρ=4sinθ,
∴ρ2=4ρsinθ,则x2+y2-4y=0,…(3分)
即圆C的直角坐标方程为x2+y2-4y=0.…(4分)
(2)∵直线l过点P(1,1),且倾斜角α=$\frac{π}{3}$,
∴直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t为参数).…(6分)
将该方程代入圆C方程x2+y2-4y=0,
得${t}^{2}+(1-\sqrt{3})t-2=0$,t1t2=-2.…(9分)
即|PA|•|PB|=|t1t2|=2.…(10分)

点评 本题考查圆的直角坐标方程的求法,考查两线段乘积的求法,是中档题,解题时要认真审题,注意极坐标方程、直角坐标方程、参数方程的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=xsinx的部分图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知,在△ABC中,∠C=90°,BC=6,AC=8,点M、N在△ABC的边上,将△ABC沿直线MN对折后,它的一个顶点正好落在对边上,且折痕MN截△ABC所成的小三角形(即对折后的重叠部分)与△ABC相似.请在下列图(不一定都用,不够可添)中分别画出折痕MN各种可能的位置,并说明画法及直接写出折痕的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用某种型号的钢板焊接一个长为1m的无盖长方体容器(接缝忽略不计他),要求其容积为2m3,则至少需要这种型号的钢板8m2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.建造一个容积为2m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为(  )
A.660B.760C.670D.680

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为$\sqrt{7}$m,求证:
(1)制造这个塔顶需要多少铁板;       
(2)求该铁塔的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{x^2}{2}-klnx$,k∈R
(1)求f(x)的单调区间;
(2)证明:当k>0时,若f(x)存在零点,则f(x)在区间$({1,\sqrt{e}}]$上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有下列命题:①双曲线$\frac{x^2}{25}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{35}+{y^2}=1$有相同的焦点;
②“-$\frac{1}{2}$<x<0”是“2x2-5x-3<0”必要不充分条件;
③若$\overrightarrow a$、$\overrightarrow b$共线,则$\overrightarrow a$、$\overrightarrow b$所在的直线平行;
④等轴双曲线的离心率是$\sqrt{2}$;
⑤?x∈R,x2-3x+3≠0.
其中是真命题的有:①④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R),A=[-1,1],设关于x的方程f(x)=$\frac{1}{x}$的两根为x1,x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案