【题目】已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.
(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;
(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).
【答案】
(1)解:如图,在边长为1的正方形ABCD内任取一点M,满足条件的点M落在扇形BAD内(图中阴影部分),由几何概型概率计算公式,有: ,
故事件“|AM|≤1”发生的概率为 .
(2)解:正方形内的28粒大豆有22粒落在扇形BAD内,
频率为 ,
用频率估计概率,由(1)知 ,
∴ ,即π的近似值为3.14.
【解析】(1)根据已知条件,求出满足条件的正方形ABCD的面积,及事件“|AM|≤1”对应平面区域的面积,代入几何概型计算公式,即可求出答案.(2)正方形内的56粒芝麻颗粒中有44粒落在扇形BAD内,频率为 ,用频率估计概率,由(1)知 ,可得圆周率π的近似值.
【考点精析】掌握几何概型是解答本题的根本,需要知道几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
科目:高中数学 来源: 题型:
【题目】已知函数(是常数且),对于下列命题:
①函数的最小值是;
②函数在上是单调函数;
③若在上恒成立,则的取值范围是;
④对任意的且,恒有
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式
(2)若bn=anlog an , Sn=b1+b2+b3+…+bn , 对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以(a,1)为圆心,且与两直线x﹣y+1=0及x﹣y﹣3=0同时相切的圆的标准方程为( )
A.x2+(y﹣1)2=2
B.(x﹣2)2+(y﹣1)2=2
C.x2+(y﹣1)2=8
D.(x﹣2)2+(y﹣1)2=8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是
甲 | 0 | 1 | 0 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 2 | 3 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 1 |
由此判断性能较好的一台是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且甲、乙两人是否答对每个试题互不影响.
(Ⅰ)求甲通过自主招生初试的概率;
(Ⅱ)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(Ⅲ)记甲答对试题的个数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
①“若x2+y2≠0,则x,y不全为零”的否命题;
②“正多边形都相似”的逆命题;
③“若m>0,则x2+x﹣m=0有实根”的逆否命题;
④“若x﹣ 是有理数,则x是无理数”的逆否命题.
A.①②③④
B.①③④
C.②③④
D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com