精英家教网 > 高中数学 > 题目详情

【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个月)和市场占有率(y%)的几组相关对应数据:

x

1

2

3

4

5

y

0.02

0.05

0.1

0.15

0.18

(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;

(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精确到月)

附: .

【答案】(1) 0.042x0.026. (2) 预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.

【解析】试题分析:(1)根据表中数据,计算 写出线性回归方程;
(2)根据回归方程得出上市时间与市场占有率的关系,列出不等式求出解集即可预测结果.

试题解析:

(1)由题意知30.1 iyi1.92

55

所以0.042

0.10.042×3=-0.026

所以线性回归方程为0.042x0.026.

(2)(1)中的回归方程可知,上市时间与市场占有率正相关,

即上市时间每增加1个月,市场占有率约增加0.042个百分点.

0.042x0.026>0.5,解得x≥13

故预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面的中点,的中点,点上,.

(1)证明:平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分10分)

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,为前天两只老鼠打洞之和,则_________________尺.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,且椭圆上任意一点到左焦点的最大距离为,最小距离为.

(1)求椭圆的方程;

(2)过点的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

(Ⅰ)求关于的线性回归方程

(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,且点A(5,0)到l的距离为3,则直线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.

查看答案和解析>>

同步练习册答案