精英家教网 > 高中数学 > 题目详情

已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且为底面对角线的交点,分别为棱的中点

(1)求证://平面
(2)求证:平面
(3)求点到平面的距离。

(1)利用中位线性质定理可知,那么结合线面平行的判定定理的到。
(2)根据,又可知,结合线面垂直的判定定理得到。
(3)

解析试题分析:(1)证明:是正方形,,的中点,又的中点,,且平面平面,平面.
(2)证明:,,又可知,而,,,,,又,的中点,,而,平面,平面 
(3)解:设点到平面的距离为,由(2)易证,,,,
,即,,得
即点到平面的距离为
考点:平行和垂直的证明,以及距离的求解
点评:主要是考查了空间中线面的平行,以及线面垂直的判定定理的运用,以及运用等体积法求解距离,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)求证
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥顶点为.底面圆心为,其母线与底面所成的角为.是底面圆上的两条平行的弦,轴与平面所成的角为

(Ⅰ)证明:平面与平面的交线平行于底面;
(Ⅱ)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(1)证明:平面
(2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案