精英家教网 > 高中数学 > 题目详情
已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。
(Ⅰ)证明:AF⊥平面FD1B1
(Ⅱ)求异面直线EB与O1F所成角的余弦值;               
(Ⅰ)证明见解析(Ⅱ)
本题考查空间的线面关系,向量法及其运算。
(Ⅰ)证法一:如图建立空间直角坐标系。则D1(0,0,0)、O1(2,2,0)
B1(4,4,0)、E(2,0,8)、A(4,0,8)、B(4,4,8)、
F(0,4,4)。            
=(-4,4,-4),=(0,4,4),
=(-4,0,4)          
=0+16-16=0,=16+0-16=0
∴AF⊥平面FD1B1.            
证法二:连结BF、DF,则BF是AF在面BC1上的射影,易证得BF⊥B1F,
DF是AF在面DC1上的射影,也易证得DF⊥D1F,所
以AF⊥平面FD1B1.
(Ⅱ)解法一:=(2,4,0),=(-2,2,4)  
的夹角为,则
=……
解法二:在B1C1上取点H,使B1H=1,连O1H和FH。
易证明O1H∥EB,则∠FO1H为异面直线EB与F所成角。
又O1H=BE=,HF==5,
O1F==2
∴在△O1HF中,由余弦定理,得

cos∠FO1H==
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.
(1)求证:
(2)求证:;             
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点。
(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅱ)求点C到平面PDB的距离;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为正方形,且平面分别是的中点.
(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABCA1B1C1中,点D在边BC上,ADC1D
(1)求证:AD⊥平面BC C1 B1
(2)设EB1C1上的一点,当的值为多少时,
A1E∥平面ADC1?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.
(Ⅰ)证明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为a的正方形ABCD所在平面外取一点P,使PA⊥平面ABCD,且PA=AB,在AC的延长线上取一点G。 
(1)若CG=AC,求异面直线PG与CD所成角的大小;
(2)若CG=AC,求点C到平面PBG的距离;

(3)当点G在AC的延长线上运动时(不含端点C),求二面角P-BG-C的取值范围。

查看答案和解析>>

同步练习册答案