精英家教网 > 高中数学 > 题目详情
命题“存在实数a,使得方程x2-3x+a=0有实数解”的否定形式为
 
考点:命题的否定
专题:简易逻辑
分析:直接利用特称命题的否定是全称命题写出结果即可.
解答: 解:因为特称命题的否定是全称命题,所以,命题“存在实数a,使得方程x2-3x+a=0有实数解”的否定形式为:对任意的实数a,使得方程x2-3x+a=0没有实数解.
故答案为:对任意的实数a,使得方程x2-3x+a=0没有实数解.
点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“k2=1”是“k=-1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y,满足
1
x
+
3
y
+2=3,则3x+y最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x-1)的定义域为A,函数g(x)=x2-2x+a的值域为B.
(1)求集合A和集合B.
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,复数z满足iz=1+i,则
.
z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

(k-1)x2+(2-k)y2=-k2+3k-2表示的轨迹为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内曲线C上的动点到定点(
2
,0
)和直线x=2
2
的比等于
2
2

(Ⅰ)求该曲线C的方程;
(Ⅱ)设动点P满足
OP
=
OM
+2
ON
,其中M,N是曲线C上的点,直线OM与ON的斜率之积为-
1
2
,问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=x-2m+3(m∈N)为奇函数,且在(0,+∞)上是增函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,点M在线段PC上,PM=tPC,PA∥平面MQB,则实数t=
 

查看答案和解析>>

同步练习册答案