精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知函数
(Ⅰ)求的值;
(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.

(Ⅰ) ;(Ⅱ) 。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若处取得极值,求的值;
(Ⅱ)讨论的单调性;
(Ⅲ)证明:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设函数
(1)若处取得极值,求的值;
(2)若在定义域内为增函数,求的取值范围;
(3)设,当时,
求证:① 在其定义域内恒成立;
求证:②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.().
(1)当时,求函数的极值;
(2)若对,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)判断函数上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M处的切线方程为.
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为奇函数,且处取得极大值2.
(1)求函数的解析式;
(2)记,求函数的单调区间。

查看答案和解析>>

同步练习册答案