精英家教网 > 高中数学 > 题目详情
3.如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.
(1)求证:平面BDE⊥平面BCD;
(2)求二面角D-EC-B的正弦值.

分析 (1)取BD边的中点F,BC的中点为G,连接AG,FG,EF,由题意可知,四边形AEFG为平行四边形,
即AG∥EF,由AG⊥平面BCD可知,EF⊥平面BCD,可证平面BDE⊥平面BCD
(2),过点B在△BEC内做BM⊥EC,垂足为M,连接DM,则DM⊥EC,可得∠DMB为所求二面角的平面角
在等腰三角形EBC中.由面积相等可知:$MB=\frac{{4\sqrt{5}}}{5}$,$MD=\frac{{4\sqrt{5}}}{5}$;$BD=2\sqrt{2}$,根据余弦定理$cos∠DMB=\frac{{M{D^2}+M{B^2}-B{D^2}}}{2•MD•MB}$=$\frac{1}{4}$,即可.

解答 解:(1)证明:如下图所示:取BD边的中点F,BC的中点为G,
连接AG,FG,EF,由题意可知,FG是△BCD的中位线                
所以FG∥AE且FG=AE,即四边形AEFG为平行四边形,
所以AG∥EF
由AG⊥平面BCD可知,EF⊥平面BCD,又EF?面BDE,
故平面BDE⊥平面BCD
(2)由AB=2,AE=1可知,$BE=\sqrt{5}$,同理$DE=\sqrt{5}$
又DC=BC=2,EC为△BEC,△DEC的公共边,
知△BEC≌△DEC,过点B在△BEC内做BM⊥EC,垂足为M,连接DM,则DM⊥EC,
所以∠DMB为所求二面角的平面角
在等腰三角形EBC中$BE=EC=\sqrt{5}$,BC=2.
由面积相等可知:$MB=\frac{{4\sqrt{5}}}{5}$,$MD=\frac{{4\sqrt{5}}}{5}$;$BD=2\sqrt{2}$
根据余弦定理$cos∠DMB=\frac{{M{D^2}+M{B^2}-B{D^2}}}{2•MD•MB}$=$\frac{1}{4}$
所以二面角D-EC-B正弦值为$\frac{{\sqrt{15}}}{4}$

点评 本题考查了空间面面垂直的判定,几何法求二面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知首项为1公差为2的等差数列{an},其前n项和为Sn,则$\lim_{n→∞}\frac{{{{({a_n})}^2}}}{S_n}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.各项均不为零的数列{an}的前n项和为Sn. 对任意n∈N*,$\overrightarrow{m_n}=({a_{n+1}}-{a_n},\;2{a_{n+1}})$都是直线y=kx的法向量.若$\lim_{n→∞}{S_n}$存在,则实数k的取值范围是(-∞,-1)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若P是抛物线y2=8x上的动点,点Q在以点C(2,0)为圆心,半径长等于1的圆上运动.则|PQ|+|PC|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,若AB=3,AC=4,$\overrightarrow{AB}•\overrightarrow{AC}=6$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\frac{{a{x^3}}}{3}-b{x^2}+{a^2}x-\frac{1}{3}$在x=1处取得极值为0,则a+b=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,$\sqrt{2}$),与x轴交于点B,C,且△MBC的面积为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(α-$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某一算法框图如图所示,则输出的S值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z2=-4,则|1+z|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案