精英家教网 > 高中数学 > 题目详情

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

【答案】D

【解析】

{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立转化为“λ>﹣2n﹣1对于nN*恒成立求解.

∵{an}是递增数列,

∴an+1>an

∵an=n2+λn恒成立

即(n+1)2+λ(n+1)>n2+λn,

∴λ>﹣2n﹣1对于nN*恒成立.

而﹣2n﹣1n=1时取得最大值﹣3,

∴λ>﹣3,

故选:D.

【点睛】

本题主要考查由数列的单调性来构造不等式,解决恒成立问题.研究数列单调性的方法有:比较相邻两项间的关系,将an+1an做差与0比较,即可得到数列的单调性;研究数列通项即数列表达式的单调性.

型】单选题
束】
13

【题目】已知数列{an}满足a1=1,且anan1+2n1 (n≥2 ),则a20________

【答案】400

【解析】

an﹣an﹣1=2n﹣1(n≥2,nN*),且a1=1.知an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1,可得到a20.

an﹣an﹣1=2n﹣1(n≥2,nN*),且a1=1.

an=(an﹣an﹣1)+(an﹣1﹣an﹣1)+…+(a2﹣a1)+a1

=(2n﹣1)+(2n﹣3)+…+3+1=

a20=400.

故答案为:400.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】O为△ABC内一点,且2 =t ,若B,O,D三点共线,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,⊥面

,DAC的中点.

(Ⅰ)求证:面BD

(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=81,an= (k∈N*),则数列{an}的前n项和Sn的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )

(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

【答案】C

【解析】如图ADE∽△ABC,设矩形的另一边长为y,则,所以,又,所以,即,解得.

【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.

型】单选题
束】
10

【题目】设等差数列{an}的前n项和为Sn,若Sm1=-2,Sm=0,Sm1=3,则m=(  )

A. 5 B. 4 C. 3 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及数列{an}的通项公式;
(3)设bn=(﹣1)n1(n+1)2anan+1(n∈N*),求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)△ABC的内角分别是A,B,C,若f(A)=1,cosB= ,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,若方程f(x+1)=|x2+2x﹣3|的实根分别为x1 , x2 , …,xn , 则x1+x2+…+xn=(
A.n
B.﹣n
C.﹣2n
D.﹣3n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线2ax+(a+c)y+2c=0(a∈R,c∈R)过定点(m,n),x1+x2+m+n=15 且x1>x2 , 则 的最小值为

查看答案和解析>>

同步练习册答案